Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(12): 8847-8860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641313

RESUMO

Indian dairy enterprise is dominated by smallholder dairy farms that contribute 72% of the country's total milk production. These smallholder dairy farms are often considered to emit substantial greenhouse gases (GHG) but are poor in productive performances. Therefore, it is crucial to estimate the carbon footprint (CF) of milk production of the smallholder Indian dairy farms. The primary objectives of the study were (1) Assessing the CF of milk production of smallholder dairy farms through life cycle analysis in south-interior Karnataka, India; (2) Identifying the hotspots of GHG emissions and significant factors influencing the CF of milk production in smallholder dairy production system. The study accounted GHG emissions from different sources and considered multiple functions of the smallholder production system. Estimations were made based on primary data collected from 47 farms and associated secondary data. For estimating the CF of milk production, the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) on a CO2-equivalent (CO2-eq) basis from feed production, enteric fermentation, manure management, transport and energy usage were allocated to fat- and protein-corrected milk (FPCM) based on mass balance, price (crop byproducts and residues) and feed digestibility. Principal component analysis and stepwise linear regression analysis were performed to identify the major factors influencing the CF. The average total GHG emissions (kg CO2-eq yr-1 farm-1) attributable to milk production based on mass, economic, and digestibility allocations were 8,936, 8,641, and 8,759, respectively. The contributions of CH4, N2O, and CO2 to the total farm GHG emission were 70.6%, 20.5%, and 7.69%, respectively. The major emission hotspots were CH4 emission from enteric fermentation (66.8%) and GHG emission from feed production (23.0%). The average CF of cradle-to-dairy cooperative milk production varied from 1.45 to 1.81 kg CO2-eq kg FPCM-1. The CF of milk production was more than 2-fold greater, when milk yield was below 3,500 kg lactating cow-1 yr-1. The FPCM yield 100 kg body weight-1, dry matter intake, and CH4 emission from manure management were the strongest determinants of the CF and explained 83.4% of the observed variation. The study emphasized the importance of considering multiple functions of a mixed crop-livestock-based dairy production system for estimating CF per unit of product. The results suggest that maintaining high-yielding dairy animals and adopting appropriate feeding strategies for better feed utilization are the possible effective interventions for reducing the CF of milk production.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Bovinos , Feminino , Animais , Leite/química , Fazendas , Lactação , Dióxido de Carbono/análise , Esterco , Indústria de Laticínios/métodos , Índia , Gases de Efeito Estufa/análise , Metano/análise , Efeito Estufa
2.
Res Vet Sci ; 150: 89-97, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809418

RESUMO

Gastrointestinal tract (GIT) epithelial cells detect nutrients in the lumen via G-protein coupled receptors (GPRs) located in the gut epithelial cells especially in enteroendocrine cells. Dietary free fatty acids (FFA) are the major energy source and also acts as signalling molecules for FFA receptors. Long chain fatty acids (LCFA) activate LCFA receptors, GPR40/FFAR1 and GPR120/FFAR4 which trigger intracellular signalling and release gut hormones or modifies gene expression that facilitate fat digestion and absorption. However, there is a paucity of information on chemosensing of nutrients and digestion in ruminants. Hence, present study was aimed to evaluate chemosensing of fat digestion and absorption by the expression pattern of GPR40, GPR120, chylomicron forming genes, fatty acid translocase (CD36/FAT), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (APOB) in the various segments of GIT in sheep supplemented with calcium salts of long chain fatty acids (CSLCFAs) along with the secretory patterns of gut peptides cholecystokinin (CCK) and peptide tyrosine tyrosine (PYY). The study was carried out for a period 60 days with eighteen adult ewes of 8-12 months of age and they were divided into three groups with six animals each as group-I, group-II and group-III. All the experimental animals were stall fed with a basal diet and maintained as per animal husbandry standards. Group-II and group-III were supplemented additionally with 3% and 5% CSLCFAs, respectively on dry matter intake. The results from the study indicated that the supplementation of CSLCFAs upregulated (P < 0.05) the relative mRNA expression of GPR40 and GPR120 in the various segments of GIT of sheep in correspondence to level of dietary fat. Abundance of mRNA expression of CD36, MTTP and APOB increased (P < 0.05) in the GIT of sheep in accordance to quantity of LCFAs in the diet where these genes facilitate fatty acid uptake. Feeding of CSLCFAs enhanced (P < 0.05) pre-feeding level of CCK from day 15 onwards, whereas, post-feeding CCK and PYY increased in all the experimental sheep. However, the increase was higher (P < 0.05) in sheep supplemented with CSLCFAs by 10.80 ± 1.45% and 14.25 ± 1.17%, respectively in comparison to group-I. The comprehensive results of the study concluded that feeding of additional CSLCFAs upregulated the expression of GPR40, GPR120, CD36, and chemosensing of LCFAs by these genes triggered the signalling transduction that enhanced CCK and PYY levels to facilitate fat digestion and absorption in accordance with quantity of dietary fat. This was further evident from the significant upregulation of MTTP and APOB in the various segments of GIT supported the high content of dietary fat at cellular fat metabolism in the gut that regulates the fatty acid uptake.


Assuntos
Antígenos CD36 , Receptores Acoplados a Proteínas G , Animais , Apolipoproteínas B/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colecistocinina/metabolismo , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Digestão , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Feminino , RNA Mensageiro , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ovinos/genética , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...